Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach

Publication Type:Journal Article
Year of Publication:2012
Authors:F. S. Ceccarelli, Sharkey, M. J., Zaldivar-Riveron, A.
Journal:Molecular Phylogenetics and Evolution
Volume:62
Issue:1
Pagination:485-495
Keywords:Doryctinae, GMYC model, integrative taxonomy, Species delineation
Abstract:

Various DNA sequence-based methods for species delineation have recently been developed to assess the species-richness of highly diverse, neglected invertebrate taxa. These methods, however, need to be tested under a variety of conditions, including the use of different markers and parameters. Here, we explored the species diversity of a species-rich group of braconid parasitoid wasps, the Neotropical genus Notiospathius, including 233 specimens from 10 different countries. We examined sequences of two mitochondrial (mt) (COI, cyt b) and one nuclear (wg) gene fragments. We analysed them separately as well as concatenating the mt data with the general mixed Yule-coalescent (GMYC) model for species delineation using different tree-building methods and parameters for reconstructing ultrametric trees. We evaluated the performance of GMYC analyses by comparing their species delineations with our morphospecies identifications. Reconstructing ultrametric trees with a relaxed lognormal clock rate using the program BEAST gave the most congruent results with morphology for the two mt markers. A tree obtained with wg using the programs MrBayes+Pathd8 had the fewest cases of incongruence with morphology, though the performance of this nuclear marker was considerably lower than that of COI and cyt b. Species delimitation using the coalescent prior to obtain ultrametric trees was morphologically more congruent with COI, whereas the Yule prior was more congruent with cyt b. The analyses concatenating the mt datasets failed to recover some species supported both by morphology and the separate analyses of the mt markers. The highest morphological congruence was obtained with the GMYC analysis on an ultrametric tree reconstructed with cyt b using the relaxed lognormal clock rate and the Yule prior, thus supporting the importance of using alternative markers when the information of the barcoding locus (COI) is not concordant with morphological evidence. Seventy-one species were delimited based on the congruence found among COI, cyt b and morphology. Both mt markers also revealed the existence of seven potential cryptic species. This high species richness from a scattered geographical sampling indicates that there is a remarkable number of Notiospathius species that remains undiscovered.

DOI:10.1016/j.ympev.2011.10.018
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith